If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-10x-160=0
a = 4; b = -10; c = -160;
Δ = b2-4ac
Δ = -102-4·4·(-160)
Δ = 2660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2660}=\sqrt{4*665}=\sqrt{4}*\sqrt{665}=2\sqrt{665}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{665}}{2*4}=\frac{10-2\sqrt{665}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{665}}{2*4}=\frac{10+2\sqrt{665}}{8} $
| 7y-3y-y-y+3y=15 | | 5.8+-2p=3.6 | | 19n-7n-11n=9 | | -2x-4(3x-3)=26 | | 4x^2-10x-40=0 | | 10y-10y+2y+5y=14 | | x^2+100x+625=0 | | 3/6x=6=12 | | 4x+14=-2x-22 | | 3x-37=2x+21 | | 8s-2s=12 | | x^2-100x-225=0 | | -3(3k-2)=-5(k-2) | | -5(x+7)=2x+7 | | 4x+2=2+4 | | –14(6x–3)+4x–21=36–3(10x+4) | | 25y-8=17y+56 | | 4r+r=8 | | -0.83+u=-0.33 | | 4x-4=-2x-8 | | 6t-t=20 | | 14r-13r=5 | | 41=u/13+14 | | x-35=10x+10 | | 2+4(x+3)=9 | | 36n=6n | | 72n=12n | | 1y+1=-1+-1 | | 3n+12=2n+14 | | -5x+4=9-6x | | 3a+9=7+a | | x+6.2=5 |